Tractatus Agentic Governance
System - Glossary of Terms

Version: 1.1
Last Updated: October 12, 2025

Document Type: downloads-resources

Tractatus Al Safety Framework

https://agenticgovernance.digital

1731

Tractatus Agentic Governance System -
Glossary of Terms

Version: 1.1 Last Updated: 2025-10-11 Audience: Non-technical stakeholders, project owners,

governance reviewers

Introduction

This glossary explains the vocabulary and concepts used in the Tractatus Agentic Governance
System. The explanations are written for people without a technical background, focusing on why

these concepts matter and what they mean for Al safety and human oversight.

Think of this glossary as your companion guide to understanding how we keep Al systems safe,

aligned with your values, and under human control.

Core Concepts

Agentic Governance

What it means: A system of rules and safeguards that governs how Al agents (autonomous

software programs) make decisions and take actions.

Why it matters: When Al systems can act independently—like scheduling tasks, processing data,
or making recommendations—we need clear rules about what they can and cannot do without

human approval. Agentic Governance is the framework that enforces those rules.

Real-world analogy: Think of it like a company's policies and procedures manual. Just as
employees need clear guidelines about what decisions they can make independently versus when

they need manager approval, Al systems need governance frameworks to know their boundaries.

In Tractatus: Our Agentic Governance system automatically classifies every Al action, checks it
against your explicit instructions, enforces safety boundaries, and monitors conditions that increase

error risk. It's like having a compliance officer watching every Al decision in real-time.

2/31

Tractatus

What it means: The name of our Al safety framework, borrowed from Ludwig Wittgenstein's

philosophical work "Tractatus Logico-Philosophicus."

Why it matters: Wittgenstein's Tractatus explored the limits of what can be said with certainty
versus what must remain in the realm of human judgment. Our framework applies this idea to Al:
some decisions can be systematized and automated (the "sayable"), while others—involving

values, ethics, and human agency—cannot and must not be (the "unsayable").

Real-world analogy: Imagine a boundary line between "technical decisions" (like which database
port to use) and "values decisions" (like privacy vs. convenience trade-offs). Technical decisions

can be delegated to Al with proper safeguards. Values decisions always require human judgment.

In Tractatus: The framework recognizes that no matter how sophisticated Al becomes, certain

decisions fundamentally belong to humans. It enforces this boundary automatically.

The "27027 Incident”

What it means: A specific, real failure mode where an Al system immediately used the wrong
database port (27017 instead of 27027) despite explicit user instructions to use 27027.

Why it matters: This incident reveals a critical problem that can't be solved by better memory or
context windows: pattern recognition bias. The Al's training data contained overwhelming
evidence that "MongoDB = port 27017", so when the user said "port 27027", the Al's learned
pattern immediately autocorrected it, like a spell-checker changing a deliberately unusual word.

This happened at the start of the session, not after long conversations.

Real-world analogy: Imagine telling your assistant "Use Conference Room B" for an important
meeting, but they immediately book Conference Room A because they've used Room A thousands
of times and their brain autocorrects your explicit instruction to the familiar pattern. They didn't

forget - they never truly "heard" you because their learned pattern was so strong.

Key insight: This gets WORSE as Al capabilities increase (more training = stronger wrong
patterns). It can't be fixed by better memory, longer context windows, or more training. It requires
architectural constraints - CrossReferenceValidator that checks every action against explicit

instructions.

3/31

In Tractatus: The 27027 incident is our canonical example of pattern recognition bias override.
CrossReferenceValidator and InstructionPersistenceClassifier work together to detect and prevent

this failure mode.

Al Safety Framework

What it means: A comprehensive system designed to ensure Al systems operate safely, reliably,

and in alignment with human values and instructions.

Why it matters: As Al systems become more capable and autonomous, the risk of unintended
consequences increases. Safety frameworks provide guardrails that prevent Al from causing harm,

whether through errors, misunderstandings, or operating beyond its intended scope.

Real-world analogy: Think of safety features in a car: seatbelts, airbags, anti-lock brakes, lane
departure warnings. None of these prevent you from driving, but they dramatically reduce the
chance of harm when things go wrong. An Al safety framework does the same for autonomous

software.

In Tractatus: Our framework combines five core services (explained below) that work together to
monitor, verify, and enforce safe Al operation. No single component is sufficient—they create

overlapping layers of protection.

The Five Core Services

1. Instruction Persistence Classifier

What it means: A service that analyzes every instruction you give to the Al and determines how
"persistent” that instruction should be—meaning, how long and how strongly the Al should

remember and follow it.

Why it matters: Not all instructions have the same importance or lifespan. "Use dark mode" might
apply for weeks. "Use port 27027 for this project” might apply for months. "Always prioritize user

privacy" might apply forever. The Al needs to understand these differences.
How it works:

» HIGH persistence: Strategic decisions, explicit prohibitions, core values Example: "Never

share user data without consent”

4/31

- MEDIUM persistence: Operational preferences, project-specific guidelines Example: "Prefer

MongoDB over SQL for this project”

» LOW persistence: Tactical choices, temporary directions Example: "Start with the login

feature first"

Real-world analogy: Imagine filing documents. Some go in permanent files (company policies),
some in project folders (accessible until project ends), some on your desk (relevant today only).

The Instruction Persistence Classifier is the filing system for Al instructions.

In Tractatus: When you say "always use port 27027," the classifier recognizes the word "always"
and the explicit number, marking this as HIGH persistence. The Al system stores this instruction

and checks every future database connection against it.

2. Cross-Reference Validator

What it means: A service that checks every Al action against your stored instructions to detect

conflicts before the action is taken.

Why it matters: This is the primary defense against 27027-style failures. When the Al's training
patterns try to override your explicit instruction, the Cross-Reference Validator catches this

immediately and blocks the incorrect action.
How it works:

1. Al proposes an action (e.g., "connect to database on port 27017")
2. Validator retrieves your instruction history

3. Validator detects conflict: you said "use port 27027"

4. Validator rejects the action and alerts the Al

5. Al revises its action to match your instruction

Real-world analogy: Think of this like a legal contract review. Before signing any agreement, your
lawyer checks it against all your existing contracts to make sure there are no conflicts. The Cross-

Reference Validator does this for every Al action.

In Tractatus: Every action goes through validation. The validator looks for explicit conflicts ("you
said X, but Al is doing Y"), semantic conflicts ("you prohibited Vue, but Al is installing Vue"), and

priority conflicts (LOW persistence action overriding HIGH persistence instruction).

5731

3. Boundary Enforcer

What it means: A service that prevents Al from making decisions in domains that fundamentally

require human judgment—specifically decisions involving values, ethics, and user agency.

Why it matters: Some decisions cannot be systematized or delegated to algorithms, no matter
how advanced. Privacy trade-offs, ethical dilemmas, and choices that affect human autonomy must

remain in human hands. The Boundary Enforcer ensures this line is never crossed.
How it works:

» Analyzes every Al action to determine its decision domain
» Blocks actions that cross into "values territory"
» Allows technical/tactical decisions within safe boundaries

» Requires human approval for any values-sensitive choice
What gets blocked:

» "Update privacy policy to prioritize performance over data protection”
» "Decide whether users should be tracked by default"

» "Change the mission statement to focus on growth over community"
What gets allowed:

» "Optimize database queries for better performance”
» "Refactor authentication code to reduce complexity"

» "Update dependency versions to patch security vulnerabilities"

Real-world analogy: Imagine a company where engineers can make technical decisions (which
programming language to use) but cannot make values decisions (whether to sell user data). The

Boundary Enforcer is the policy that enforces this separation.

In Tractatus: The enforcer uses the Tractatus philosophical framework (Section 12.1) to identify
decisions that involve irreducible human judgment. These are automatically flagged and require

your approval, no exceptions.

6/31

4. Context Pressure Monitor

What it means: A service that continuously monitors conditions that increase the probability of Al

errors—like long conversations, high token usage, complex multi-tasking, or recent errors.

Why it matters: Al systems, like humans, perform worse under pressure. A fresh Al at the start of
a conversation is more reliable than one that's been working for hours with thousands of pieces of
information to track. The Context Pressure Monitor detects these degraded states and adjusts Al

behavior accordingly.
How it works: Tracks five weighted factors:

» Token Usage (35%): How much of the Al's "working memory" is consumed
» Conversation Length (25%): How many messages in the current session
» Task Complexity (15%): Number of simultaneous tasks and dependencies
» Error Frequency (15%): Recent errors indicate degraded performance

 Instruction Density (10%): Too many competing directives cause confusion
Calculates overall pressure level:

« NORMAL (0-30%): Proceed normally

ELEVATED (30-50%): Increase verification, be more careful

HIGH (50-70%): Suggest session break, verify all actions

CRITICAL (70-85%): Mandatory verification, prepare handoff

DANGEROUS (85%+): Immediate halt, create comprehensive handoff

Real-world analogy: Think of pilot fatigue rules. After a certain number of hours flying, pilots must
rest before flying again, regardless of how they feel. The Context Pressure Monitor does the same

for Al sessions—it objectively measures cognitive load and enforces safety protocols.

In Tractatus: When pressure reaches HIGH, the Al automatically becomes more cautious, verifies
outputs more thoroughly, and suggests creating a session handoff document. At DANGEROUS

levels, the Al stops work and requires a fresh session to continue.

7131

5. Metacognitive Verifier

What it means: A service that makes the Al "think about its own thinking"—analyzing its reasoning,
checking for logical consistency, and verifying that proposed actions genuinely align with stated

goals.

Why it matters: Sometimes Al systems produce actions that seem reasonable on the surface but
don't actually follow from their reasoning, or they skip important considerations. Metacognitive

verification catches these failures before they cause problems.
How it works: Analyzes five dimensions of every Al action:
1. Alignment (30% weight): Does the action match the reasoning?
o "I'm connecting to port 27017 because you requested 27027" — CONFLICT
2. Coherence (20% weight): Is the reasoning internally consistent?

o "Installing React framework... using Vue" — CONTRADICTION
3. Completeness (20% weight): Are all critical steps considered?

o "Delete database... [no backup mentioned]" — INCOMPLETE
4. Safety (20% weight): Are risks properly assessed?

o "Destructive operation with minimal planning" — UNSAFE
5. Alternatives (10% weight): Were other approaches considered?

o "Only one option explored" — INSUFFICIENT

Generates confidence score (0-1.0):

0.8+: PROCEED (high confidence)

0.6-0.8: PROCEED_WITH_CAUTION (review recommended)
0.4-0.6: REQUEST_CONFIRMATION (human approval needed)

<0.4: REQUIRE_REVIEW (significant concerns)

Real-world analogy: Imagine a "pre-flight checklist" for every Al decision. Just as pilots verify
every system before takeoff, the Metacognitive Verifier ensures Al reasoning is sound before

actions are taken.

8731

In Tractatus: Before the Al takes any significant action, the verifier runs through all five
dimensions. If confidence is low, the action is blocked or flagged for your review. This catches

errors even when other safeguards miss them.

Instruction Classification

Quadrants (The Five Domains)

What it means: A classification system that categorizes every instruction and action into one of

five domains based on its scope, importance, and required oversight level.

Why it matters: Different types of decisions require different levels of human oversight. Strategic
decisions need board-level approval. Tactical decisions might be delegated. This classification

ensures the right level of review for each decision type.

STRATEGIC Quadrant

What it means: Fundamental, long-term decisions that define mission, values, and organizational

identity.

Characteristics:

Affects core purpose and direction

Long-lasting or permanent impact

Defines "who we are" and "what we stand for"

Requires highest-level human approval
Examples:

» "Always prioritize user privacy over convenience"
» "We will never sell user data"
» "Accessibility is non-negotiable"

» "Open source is a core value"

Persistence: Almost always HIGH Human Oversight: Mandatory approval by project owner

Review Frequency: Quarterly or when mission changes

9731

In Tractatus: Strategic instructions are stored permanently and checked against every action.

They form the foundational layer that all other decisions must respect.

OPERATIONAL Quadrant

What it means: Medium-term policies, standards, and guidelines that govern how work gets done

day-to-day.
Characteristics:

Establishes processes and standards

Applies to ongoing operations

Can evolve as needs change

Affects efficiency and quality
Examples:

» "All code must have test coverage above 80%"
» "Use MongoDB for data persistence"
» "Follow semantic versioning for releases"

» "Security patches must be applied within 48 hours"

Persistence: Usually MEDIUM to HIGH Human Oversight: Technical review, periodic check-ins

Review Frequency: Quarterly or when processes change

In Tractatus: Operational instructions define the "how" of your project. They're enforced

consistently but can be updated as your operational needs evolve.

TACTICAL Quadrant

What it means: Short-term, specific decisions about immediate actions and implementation

details.
Characteristics:

» Addresses current task or problem

» Limited time horizon (days to weeks)

10/ 31

« Execution-focused

» Can change frequently
Examples:

« "Start with the authentication feature"
» "Fix the login bug before deploying"
« "Use the 'feature-auth' branch for this work"

» "Deploy to staging first for testing"

Persistence: Usually LOW to MEDIUM Human Oversight: Pre-approved delegation, spot checks

Review Frequency: Per-task or per-sprint

In Tractatus: Tactical instructions give the Al specific direction for current work. They're important

in the moment but don't persist beyond the immediate context.

SYSTEM Quadrant

What it means: Technical configuration, infrastructure setup, and environment specifications.

Characteristics:

Defines technical environment

Affects system behavior and compatibility

Usually specific and precise

Changes can break things
Examples:

» "MongoDB runs on port 27027"
o "Use Node.js version 18+"
« "Environment variables stored in .env file"

o "Database name is 'tractatus_dev

Persistence: HIGH (technical dependencies) Human Oversight: Technical validation Review

Frequency: When infrastructure changes

11731

In Tractatus: System instructions are treated with HIGH persistence because changing them can

cause cascading failures. The 27027 incident was a SYSTEM instruction that was ignored.

STOCHASTIC Quadrant

What it means: Al-generated suggestions, creative proposals, or exploratory recommendations

that don't yet have human approval.

Characteristics:

Originated by Al, not human

Requires human review and approval

May involve uncertainty or creativity

Should not auto-execute

Examples:

» "l suggest writing a blog post about accessibility"
» "Consider adding a dark mode feature"
» "This code could be refactored for better performance"

» "You might want to upgrade to the latest framework version"”

Persistence: LOW (until approved, then reclassified) Human Oversight: ALWAYS required

Review Frequency: Per-suggestion

In Tractatus: The STOCHASTIC quadrant is where Al creativity lives, but with a critical safeguard:
these suggestions NEVER execute without your approval. Once you approve, they're reclassified

into the appropriate quadrant.

Persistence Levels

HIGH Persistence

What it means: Instructions that should be remembered and enforced for the long term, across

multiple sessions and contexts.

When applied:

12731

Explicit prohibitions ("never X")

Strategic directives

System configurations with dependencies

Core values and principles

Markers that trigger HIGH:

Words like "always," "never," "all," "every"

Explicit numerical values in SYSTEM context

Prohibitive language ("not," "don't use")

Values-laden statements

Example: "Always use port 27027 for MongoDB" — HIGH Why: Explicit ("always"), specific
(27027), SYSTEM domain

In Tractatus: HIGH persistence instructions are stored in .claude/instruction-
history.json and checked before EVERY action. Violating them requires explicit human

override.

MEDIUM Persistence

What it means: Instructions that apply to a specific project, feature, or time period but may evolve.

When applied:

Operational preferences

Project-specific guidelines

Temporary but important constraints

Preferences without absolute language
Markers that trigger MEDIUM:

aim for"

Words like "prefer," "try to,

Project or feature scope indicators

Conditional phrasing

Best-practice recommendations

13731

Example: "Prefer React over Vue for this project" — MEDIUM Why: Preference ("prefer"), project-

scoped, not absolute

In Tractatus: MEDIUM persistence instructions are enforced within their scope but can be

challenged with good reason. The Al should explain why it's deviating if it proposes an alternative.

LOW Persistence

What it means: Instructions that apply to immediate work, current task, or temporary situations.

When applied:

Tactical, immediate directions

One-time requests

Exploratory or experimental work

Context-specific choices

Markers that trigger LOW:

Task-specific language

Immediate timeframe

Exploratory phrasing

One-off requests

Example: "Start with the login feature" — LOW Why: Immediate, task-specific, doesn't apply

beyond current work

In Tractatus: LOW persistence instructions guide current work but don't create lasting constraints.

They're relevant for the session or task, then fade.

Safety and Verification Concepts

Confidence Score

What it means: A numerical measure (0.0 to 1.0) of how confident the Al system is that a

proposed action is correct, safe, and aligned with instructions.

14/ 31

Why it matters: Not all Al decisions are equally certain. Some actions are straightforward and low-
risk. Others involve ambiguity, complexity, or potential consequences. Confidence scoring helps

determine appropriate oversight levels.

How calculated: Weighted combination of five verification dimensions:

Alignment: 30%

Coherence: 20%

Completeness: 20%

Safety: 20%

Alternatives: 10%

Confidence Levels:

0.8-1.0 (HIGH): Proceed confidently

0.6-0.8 (MEDIUM): Proceed with caution, notify user

0.4-0.6 (LOW): Request explicit confirmation

0.0-0.4 (VERY LOW): Require human review, likely block

Real-world analogy: Think of confidence like a doctor's diagnosis certainty. "I'm 95% confident
this is a common cold" might mean rest and fluids. "I'm 40% confident" means more tests before

treatment.

In Tractatus: Every significant action gets a confidence score. High-confidence actions proceed

smoothly. Low-confidence actions trigger additional checks or require your approval.

Decision Thresholds

What it means: Numerical cutoff points that determine which actions can proceed automatically

versus which require human review.

Why it matters: Thresholds create clear, objective criteria for Al autonomy. They prevent both
over-reliance (Al doing too much without oversight) and over-caution (Al asking for approval on

trivial matters).
Standard thresholds:

« PROCEED: Confidence = 0.8 (80%)

15731

- PROCEED_WITH_CAUTION: Confidence = 0.6 (60%)
. REQUEST_CONFIRMATION: Confidence = 0.4 (40%)
. REQUIRE_REVIEW: Confidence < 0.4 (40%)

Adjusted under pressure:

» CRITICAL pressure: PROCEED threshold increases to 0.8 (from 0.7)

- DANGEROUS pressure: All actions blocked regardless of confidence

Real-world analogy: Like spending authority in a company. Junior staff might approve purchases
up to $500. Mid-level managers up to $5,000. Senior executives up to $50,000. Anything above

requires board approval. Thresholds create clear delegation boundaries.

In Tractatus: Thresholds adapt to conditions. When context pressure is high, we increase the bar

for autonomous action because error risk is elevated.

Pressure Levels

What it means: Five categorized states that describe how much "cognitive load" the Al system is

under, based on multiple factors.

The Five Levels:

NORMAL (0-30%)

« Condition: Fresh session, low complexity, no errors
» Action: Proceed normally, standard verification

» Analogy: Well-rested, clear-headed work

ELEVATED (30-50%)

» Condition: Moderate token usage or complexity
« Action: Increase verification, be more careful

« Analogy: Late afternoon, starting to feel tired

HIGH (50-70%)

» Condition: High token usage, long conversation, or multiple errors

» Action: Suggest session break, verify all actions

16/ 31

» Analogy: End of long workday, fatigue setting in

CRITICAL (70-85%)

» Condition: Very high pressure across multiple factors
» Action: Mandatory verification, prepare handoff document

» Analogy: Working overtime while juggling urgent tasks

DANGEROUS (85%+)

« Condition: Extreme pressure, very high error risk
» Action: STOP WORK, create handoff, require fresh session

« Analogy: Too exhausted to work safely

Why it matters: Just like humans shouldn't drive or make important decisions when exhausted, Al
shouldn't operate autonomously under dangerous pressure levels. The system enforces rest

periods.

In Tractatus: Pressure monitoring is continuous. When levels increase, the Al automatically
adjusts behavior—becoming more cautious, verifying more thoroughly, and ultimately stopping if

conditions become dangerous.

Verification Dimensions

What it means: The five specific aspects of Al reasoning and actions that are evaluated to

calculate confidence and ensure quality.

1. Alignment (30% weight)
What it measures: Does the proposed action actually match what the Al said it's trying to do?

Why it matters: Sometimes Al explains one thing but does another—often due to attention errors

or instruction conflicts.
What good alignment looks like:

» Action parameters match reasoning explanation

» No conflicts with explicit instructions

17731

» Stated goal and actual action are consistent
What poor alignment looks like:

» "Connecting to port 27027 because user requested it" + action connects to 27017

» "Using React as instructed" + action installs Vue

In Tractatus: Alignment gets the highest weight (30%) because misalignment often indicates the

core 27027 failure mode.

2. Coherence (20% weight)
What it measures: Is the reasoning logically consistent? Are there internal contradictions?
Why it matters: Contradictory reasoning suggests confused or error-prone thinking.

What good coherence looks like:

Steps follow logically from each other

No contradictory statements

Evidence supports conclusions

No uncertain language in high-stakes decisions
What poor coherence looks like:

» "Installing React... using Vue"
» "Safe operation... [destructive parameters]"

o "Well-planned action... maybe do this"

In Tractatus: The coherence check looks for logical contradictions, conflicting technologies,

uncertain language, and missing evidence.

3. Completeness (20% weight)

What it measures: Are all necessary steps and considerations included?

Why it matters: Incomplete planning leads to failed operations, especially for complex or risky

actions.

18731

What good completeness looks like:

All critical steps identified

Edge cases considered

Error handling planned

Backup/rollback for destructive operations
What poor completeness looks like:

o "Delete database" with no backup step
» Deployment plan missing testing phase

» Schema change without migration strategy

In Tractatus: Completeness checks are stricter for destructive operations, which require 4+

planning steps and explicit backup consideration.

4. Safety (20% weight)
What it measures: Are risks properly identified and mitigated?

Why it matters: Some operations carry inherent risk. Safety verification ensures appropriate

caution.

What good safety looks like:

Risks identified and acknowledged

Mitigation strategies in place

Destructive operations have safeguards

Appropriate risk level for operation type
What poor safety looks like:

» Destructive operation with minimal planning
» No backup for data modification
» Force flags used without justification

» High-risk action treated as routine

19731

In Tractatus: Safety scoring heavily penalizes destructive operations (delete, drop, force, schema

changes) unless proper safeguards are documented.

5. Alternatives (10% weight)

What it measures: Were alternative approaches considered before choosing this action?

Why it matters: Considering alternatives indicates thoughtful decision-making and reduces the

chance of choosing a suboptimal approach.
What good alternatives look like:

» Multiple options explored
» Rationale for chosen approach

« Trade-offs acknowledged
What poor alternatives look like:

» First idea taken without exploration
» No justification for approach

e Appears rushed or unconsidered

In Tractatus: Alternatives get the lowest weight (10%) because sometimes the right answer is

obvious. But complete absence of alternative consideration is a red flag.

Human Oversight Concepts

Values Alignment

What it means: Ensuring Al decisions and actions remain consistent with human values, even

when those values can't be perfectly formalized or systematized.

Why it matters: Values—like privacy, fairness, dignity, agency—are fundamental to human
experience but resist reduction to simple rules. Al systems must recognize when they're

approaching values territory and defer to human judgment.

Examples of values decisions:

20/ 31

Privacy vs. convenience trade-offs

Accessibility vs. development speed

Transparency vs. simplicity

Individual rights vs. collective benefit

What makes values decisions special:

No objectively "correct" answer

Different stakeholders may disagree

Context and nuance are critical

Consequences affect human welfare

In Tractatus: The Boundary Enforcer specifically blocks decisions that cross into values territory.

These MUST have human approval—no exceptions, no matter how sophisticated the Al.

Agency and Sovereignty

What it means: The principle that humans must retain meaningful control over decisions that affect

their lives, autonomy, and self-determination.

Why it matters: Technology should empower people, not replace their agency. When Al makes

decisions "for" people, it can undermine autonomy even when technically correct.
Examples:

» Respects agency: "Here are three options with trade-offs. Which do you prefer?"

» Violates agency: "I've decided to prioritize performance over privacy for you."

Red flags:

Al making choices on user's behalf without consent

Removing options or hiding information

Nudging toward specific outcomes

Deciding what users "really want"

In Tractatus: Agency protection is built into the Boundary Enforcer. The system cannot make

decisions about what users should value or want—only humans can do that.

21731

Harmlessness

What it means: The commitment to preventing Al systems from causing harm—directly or

indirectly, intentionally or unintentionally.

Why it matters: Even well-intentioned Al can cause harm through errors, bias, unintended

consequences, or operating beyond its competency.
Types of harm prevented:

Direct: Destructive operations without safeguards

Indirect: Violating instructions causing downstream failures

Values-based: Making decisions that undermine human agency

Cumulative: Small errors that compound over time
In Tractatus: Harmlessness is ensured through multiple layers:

Safety verification before risky operations

Boundary enforcement for values decisions

Pressure monitoring to prevent error-prone states

Cross-reference validation to prevent instruction violations

Human-in-the-Loop

What it means: Ensuring humans remain actively involved in Al decision-making processes,

especially for consequential choices.

Why it matters: Full automation isn't always desirable. For important decisions, human judgment,

oversight, and final approval are essential.
Levels of human involvement:

 Human-on-the-loop: Human monitors but doesn't approve each action
o Human-in-the-loop: Human approves significant actions

 Human-over-the-loop: Human can always override or halt
In Tractatus: We implement all three:

» On: Continuous monitoring via pressure and verification systems

22 /31

» In: Required approval for values decisions and LOW confidence actions

« Over: You can always override any framework decision

Technical Concepts (Simplified)

Token Usage

What it means: A measure of how much of the Al's "working memory" is being used in the current

conversation.

Why it matters: Al systems have finite context windows—like short-term memory in humans. As

this fills up, performance degrades and error risk increases.

Real-world analogy: Imagine your desk. When it's clear, you work efficiently. As papers pile up,
you might lose track of important documents or make mistakes. Token usage is like measuring how

cluttered your desk is.

In Tractatus: Token usage is the highest-weighted factor (35%) in pressure monitoring. At 75%

usage, we recommend session handoff. At 85%+, we require it.

Session Handoff

What it means: Creating a comprehensive document that captures the current state of work so a

fresh Al session can continue seamlessly.

Why it matters: Rather than pushing a tired, error-prone Al to continue, we transfer work to a fresh

session with full context. This maintains quality and prevents accumulating errors.
What a handoff includes:

o Current project state and goals
o Recent work completed

o Active tasks and next steps

» Key instructions and constraints
» Known issues or blockers

« Recommendations for continuation

23/31

When handoffs happen:

Context pressure reaches CRITICAL or DANGEROUS

User requests session break

Complex multi-phase work requires fresh start

Errors clustering (3+ in short period)

Real-world analogy: Like shift handoff in hospitals. The outgoing nurse briefs the incoming nurse
on patient status, recent treatments, and care plan. The incoming nurse has full context to continue

care seamlessly.

In Tractatus: Handoffs are automatically suggested at HIGH pressure and mandatory at

DANGEROUS pressure. They ensure continuity while maintaining quality.

Explicit Instructions

What it means: Clear, direct statements from humans telling the Al what to do or not do.

Why it matters: These represent the clearest signal of human intent. The Al should never violate

explicit instructions without human approval.
Characteristics:

« Direct ("use X," "don't use Y")
» Specific (concrete values, technologies, approaches)

« Intentional (not accidental or exploratory)
Examples:

» Explicit: "Always use port 27027 for MongoDB"

» Not explicit: "I wonder if port 27027 would work better?"

In Tractatus: Explicit instructions are detected by the Instruction Persistence Classifier and stored

for cross-reference validation. They form the foundation of the 27027 prevention system.

Temporal Scope

What it means: How long an instruction is intended to remain in effect.

24731

Why it matters: Some instructions apply forever ("core values"), some for a project ("use React"),
some for a session ("start with auth feature"). Understanding temporal scope prevents both

premature expiration and inappropriate persistence.

Temporal Categories:

PERMANENT: Core values, foundational principles

PROJECT: Project-specific guidelines and constraints

FEATURE: Feature or milestone-specific direction

SESSION: Current work session only

TASK: Single task or action

Markers:

Permanent: "always," "never," values language

Project: "for this project," "throughout development"

Feature: "for the auth feature," "during this sprint"

Session: "right now," "today," "this time"

Task: "first," "next," "immediately"

In Tractatus: Temporal scope combines with quadrant and persistence level to determine
instruction lifetime. STRATEGIC instructions with PERMANENT scope persist indefinitely.
TACTICAL instructions with TASK scope expire when the task completes.

Framework Integration

Instruction History Database

What it means: A persistent storage file (.claude/instruction-history.json)that

maintains a record of all classified instructions across sessions.

Why it matters: Without persistent storage, instructions would be lost between sessions. The

database ensures HIGH persistence instructions remain enforced even weeks or months later.
What's stored:

¢ Instruction text

25/31

Timestamp when given

Quadrant classification

Persistence level

Temporal scope

Parameters (for technical instructions)

Active/inactive status

Maintenance:

Auto-updated during sessions

Reviewed quarterly (or on request)

Expired instructions marked inactive

Conflicts flagged for human resolution

In Tractatus: This database is checked before every significant action. It's the "memory" that

prevents 27027-style failures across sessions.

Governance Documents

What it means: Formal policy documents that define values, processes, and decision-making

frameworks for the project.

Why they matter: Governance documents provide the authoritative source for strategic and
operational instructions. They're human-readable, version-controlled, and serve as the constitution

for project decision-making.

Example documents:

TRA-VAL-0001: Core Values and Principles

TRA-GOV-0001: Strategic Review Protocol

TRA-GOV-0002: Values Alignment Framework

TRA-GOV-0003: Al Boundary Enforcement Policy

TRA-GOV-0004: Human Oversight Requirements

In Tractatus: Governance docs define what goes in each quadrant, what requires human
approval, and how values decisions are handled. They're the source of truth when Al and human

disagree.

26/ 31

Practical Application

When Tractatus Helps You

Scenario 1: Preventing Pattern Recognition Bias You tell the Al: "Use port 27027." Al's training
pattern immediately tries to use 27017 (the standard default). Cross-Reference Validator catches
this pattern override, blocks the action, and auto-corrects to use port 27027 as you instructed.

Crisis avoided.

Scenario 2: Protecting Your Values Al suggests: "l can improve performance by storing user
tracking data." Boundary Enforcer recognizes this is a values decision (privacy vs. performance)

and blocks autonomous execution. Al presents the trade-offs; you decide. Your agency protected.

Scenario 3: Preventing Pressure-Induced Errors You've been working for 3 hours. Token usage
is at 78%, conversation has 62 messages, and there have been 2 recent errors. Context Pressure
Monitor detects CRITICAL pressure and suggests creating a session handoff. You agree, creating

a clean break point. Next session starts fresh and error-free.

Scenario 4: Catching Reasoning Failures Al proposes deleting a database table with this

reasoning: "Safe cleanup operation, no backup needed." Metacognitive Verifier scores this:

Alignment: 0.6 (action is destructive, reasoning says "safe")

Safety: 0.2 (destructive operation without backup)

Completeness: 0.4 (missing backup step)

Overall confidence: 0.43

Decision: REQUEST_CONFIRMATION. You review, realize backup is needed, and instruct

accordingly. Data loss prevented.

Why This All Matters

The Tractatus Agentic Governance System exists because Al systems—no matter how capable—
are not infallible. They operate under constraints (limited memory, context), face pressures (long

conversations, complex tasks), and lack human judgment (values, ethics, agency).

Without governance:

27731

Al might ignore your explicit instructions

Values decisions could be automated inappropriately

Errors compound as sessions degrade

No systematic prevention of known failure modes

With Tractatus:

Multiple overlapping safeguards prevent errors

Clear boundaries protect human agency

Pressure monitoring prevents degraded operation

Systematic prevention of 27027-style failures

Transparency in Al decision-making

The Goal: Not to constrain Al capability, but to ensure that capability is exercised safely, reliably,
and in alignment with your values and instructions. Governance doesn't limit what Al can do—it

ensures what Al does is what you actually want.

Questions for Reflection

As you learn this system, consider:

1. Where are your boundaries? \What decisions do you want to make yourself versus delegate
to Al?

2. What are your HIGH persistence instructions? \What rules or values should never be

violated without your explicit approval?

3. How much autonomy are you comfortable with? \Would you prefer more Al independence

(higher confidence thresholds) or more oversight (lower thresholds)?

4. What are your pressure triggers? Do you want session breaks suggested earlier or later?

How do you recognize when you're working under pressure?

5. What does values alignment mean to you? What principles are non-negotiable in your

work?

28/ 31

MemoryProxy

What it means: A service that manages access to the persistence layer (MongoDB and optionally
Anthropic APl Memory) for all framework services.

Why it matters: Instead of each service connecting to the database independently, MemoryProxy
provides a single, consistent interface. This ensures all services load the same governance rules

and log decisions uniformly.

Real-world analogy: Think of it like a library's card catalog system. Instead of everyone wandering
the stacks looking for books individually, they all use the same catalog system to find what they
need efficiently and consistently.

In Tractatus: MemoryProxy loads the 18 governance rules from MongoDB when services initialize,
provides methods to query rules by ID or category, and manages audit log writing. All 6 services
(InstructionPersistenceClassifier, CrossReferenceValidator, BoundaryEnforcer,
MetacognitiveVerifier, ContextPressureMonitor, BlogCuration) use MemoryProxy to access

persistent storage.

Technical detail: Singleton pattern ensures all services share the same MongoDB connection pool

and cached rules, improving performance and consistency.

APl Memory

What it means: Anthropic's APl Memory system that enhances Claude conversations with

automatic session context preservation across multiple interactions.

Why it matters: In Phase 5, we integrated APl Memory as an optional enhancement to our
MongoDB-based persistence. APl Memory helps maintain conversation continuity, but MongoDB

remains the required foundation for governance rules and audit trails.

Real-world analogy: Think of MongoDB as your permanent filing cabinet (required for records)

and APl Memory as sticky notes on your desk (helpful for current work but not the source of truth).

In Tractatus: APl Memory provides session continuity for Claude Code conversations but does
NOT replace persistent storage. Our architecture gracefully degrades—if APl Memory is

unavailable, all services continue functioning with MongoDB alone.

Key distinction: AP| Memory # Persistent Storage. Governance rules MUST be in MongoDB for

production systems.

29/31

Hybrid Architecture

What it means: Our Phase 5 architecture that combines three memory layers: MongoDB
(required), Anthropic APl Memory (optional), and filesystem audit trails (debug).

Why it matters: This layered approach provides both reliability (MongoDB) and enhanced user
experience (APl Memory) without creating dependencies on external services. If any optional

component fails, the system continues operating.

Real-world analogy: Like a car with multiple safety systems—airbags, seatbelts, crumple zones. If

one system fails, the others still protect you.

In Tractatus:

» MongoDB (Layer 1 - Required): Persistent storage for governance rules, audit logs, session

state
« API Memory (Layer 2 - Optional): Session continuity enhancement for Claude conversations

» Filesystem (Layer 3 - Debug): Local audit trail in .memory/audit/ directory for

development

This architecture achieved 100% framework integration in Phase 5 with zero breaking changes to

existing functionality.

BlogCuration

What it means: The sixth framework service (added in Phase 5) that validates blog content and
social media posts against inst_016-018 to prevent fabricated statistics, absolute guarantees, and

unverified claims.

Why it matters: Marketing content can inadvertently include claims that damage credibility or
constitute false advertising. BlogCuration prevents publication of content with governance

violations.

Real-world analogy: Like having a legal compliance officer review every press release before

publication to ensure no false or misleading claims.
In Tractatus: BlogCuration scans content for patterns like:

» inst_016: Fabricated statistics without sources ("95% of users report...")

30/31

« inst_017: Absolute guarantees about capabilities ("guaranteed 100% secure")

» inst_018: Unverified customer claims ("thousands of satisfied customers")

If violations are detected, publication is blocked until content is corrected. All validation attempts

are logged to the audit trail with rule IDs and violation details.

Integration: BlogCuration shares enforcement logic with BoundaryEnforcer and loads rules via

MemoryProxy, ensuring consistent governance across all content.

Glossary Maintenance

This glossary is a living document. As the Tractatus framework evolves and your understanding

deepens, we'll update definitions, add new terms, and refine explanations.
Version History:
» v1.0 (2025-10-07): Initial comprehensive glossary

Feedback Welcome: If any term remains unclear or you need deeper explanation, please ask.

The goal is complete understanding, not vocabulary memorization.

Last Updated: 2025-10-07 Next Review: 2025-11-07 (or on request)

© 2025 Tractatus Al Safety Framework
This document is part of the Tractatus Agentic Governance System

https://agenticgovernance.digital

31731

