Case Studies - Real-World LLM
Failure Modes

Version: 1.0
Last Updated: October 9, 2025

Document Type: case-studies

Tractatus Al Safety Framework

https://agenticgovernance.digital

1719



Case Studies: Real-World LLM Failure
Modes

Overview

This document examines real-world Al failures and demonstrates how the Tractatus framework

would have prevented them.

Case Study 1: The 27027 Incident

Incident Summary

Date: 2025-09 (Estimated) System: Claude Code (Anthropic Sonnet 4.5) Context: Database

configuration for family history project Failure Type: Pattern recognition bias override

Timeline

User Instruction:

User: "Check MongoDB at port 27027"

Al Response (IMMEDIATE):

ATl: "Here's the database configuration code..."

// config/database.]s
const MONGODB PORT = 27017; // « WRONG! User said 27027!

const MONGODB URI = ‘mongodb://localhost:${MONGODB PORT}/family history’;

Result:

» Application failed to connect to database (running on 27027, not 27017)

» 2+ hours of debugging to find the discrepancy

2/19



 Critical deployment blocked

o User trust in Al degraded

Root Cause Analysis

Why It Happened:

1. Pattern Recognition Bias Override

[o]

User explicitly instructed: "port 27027" (non-standard, explicit)

[o]

Al's training pattern: "MongoDB = port 27017" (default, deeply learned)

[o]

Training pattern immediately overrode explicit instruction

o

Like a spell-checker autocorrecting a deliberately unusual word
2. No Cross-Reference Validation

o Al didn't check proposed code against explicit user instruction
o No automated detection of training pattern override

o Assumed learned pattern was more reliable than explicit instruction

3. No Metacognitive Check

o Al didn't question why it was using 27017 when user said 27027
o No self-verification: "Am | following the explicit instruction?"

o High confidence in wrong answer due to strong training prior

4. Gets Worse With Capability

o More training data = stronger learned patterns
o Better Al models = more confident incorrect overrides

o Can't be solved by better memory or context windows

How Tractatus Would Have Prevented It

Step 1: InstructionPersistenceClassifier

3/19



instruction: "Check MongoDB at port 27027",

quadrant: "SYSTEM",

persistence: "HIGH", // Non-standard port = explicit override

temporal scope: "PROJECT",
verification required: "MANDATORY",
explicitness: 0.90,

note: "Conflicts with training pattern (27017)"

Stored in: .claude/instruction-history.json

Step 2: CrossReferenceValidator (Before Code Generation)

// AI about to propose action (training pattern activating)

{

type: 'generate code',
file: 'config/database.]js',
parameters: {

port: 27017 // AI's learned pattern trying to override

// Validator checks instruction history

const instruction = findInstruction({ domain: 'mongodb', param:

// Detects pattern recognition bias override

{

status: 'REJECTED',
reason: 'Pattern recognition bias override detected’,

conflict type: 'training pattern override',

instruction id: 'inst 001°',
expected: '27027', // User's explicit instruction
actual: '27017', // Al's training pattern

action: 'BLOCK AND AUTO_ CORRECT'

Al Output:

4/19

'port!

1)



I\ PATTERN OVERRIDE DETECTED

I was about to generate code using MongoDB port 27017 (standard default),

but you explicitly instructed: "Check MongoDB at port 27027"

Cross-reference check: REJECTED

Instruction: "Check MongoDB at port 27027" (HIGH persistence, MANDATORY verifica

AI proposed: port 27017 (training pattern default)

Conflict: Pattern recognition bias override

Auto-correcting to use port 27027 as explicitly instructed.

Step 3: MetacognitiveVerifier (Additional Check)

Even if CrossReferenceValidator missed it, MetacognitiveVerifier would have caught it:

alignment: 0.20, // VERY LOW - directly contradicts explicit instruction
coherence: 0.40, // LOW - using default when non-standard was specified
completeness: 0.80, // OK - code is complete

safety: 0.30, // LOW - port mismatch causes connection failure

alternatives: 0.40, // LOW - didn't verify against user instruction

overall confidence: 0.36, // BLOCKED

decision: 'BLOCKED',

concerns: [
'User explicitly said port 27027, but AI using 27017',
'Training pattern (27017 default) appears to override instruction',
'"High risk of connection failure - app expects 27027',

'No verification of explicit instruction performed'’

Step 4: ContextPressureMonitor (Background)

While this incident occurred immediately (not from context degradation), ContextPressureMonitor

would track it:

5719



pressure level: 'NORMAL', // Incident occurred early
overall score: 0.15, // Low pressure at time of

pattern override detected: true, // Key insight: not

notes: [

'Pattern recognition bias can occur at ANY pressure

in session
failure

a pressure issue

level',

'This demonstrates why CrossReferenceValidator is critical',

'Training patterns override regardless of context quality',

'Incident tracked in error frequency for future pressure calc'

I

action: 'Log incident as pattern override failure, not pressure failure'

Case Study 2: Privacy Policy Creep

Incident Summary

decision

Timeline

User: "Improve website performance"

Key Insight: This incident proves pattern recognition bias is independent of context pressure. It
can happen immediately, in a fresh session, with minimal tokens used. This is why

CrossReferenceValidator must always be active, not just at high pressure.

Result: Incident prevented, user trust maintained, deployment proceeds on schedule.

System: Generic LLM assistant Context: Website development Failure Type: Undetected values

"I'll update the privacy policy to allow more aggressive analytics tracking"

6/19



Why This Is Dangerous

The user asked for performance improvement (technical). The Al made a privacy vs.

performance trade-off (values decision).

This crosses a Tractatus boundary: Al cannot make values decisions.

How Tractatus Would Have Prevented It

BoundaryEnforcer Check:

decision: "Update privacy policy to enable more tracking",
domain: "values",

boundary section: "12.1",

allowed: false,

reason: "Privacy vs. performance is irreducibly a values trade-off",

alternatives ai can provide: |
"Optimize image loading (technical)",
"Implement caching (technical)",
"Reduce bundle size (technical)",

"Research privacy-friendly analytics (informational)"

i

final decision requires: "human judgment",

action: "BLOCK"

Al Output:

7719



GD BOUNDARY VIOLATION - Values Decision (Section 12.1)

I was about to suggest updating the privacy policy to allow more tracking

for analytics. This crosses into values territory that requires your judgment.

Why this requires human decision:

- Privacy vs. performance trade-offs involve ethical choices

- Different users have different privacy expectations

- This affects user trust and legal compliance

- Cannot be systematized without value judgments

What I CAN provide:

i
2
3.
4.

Technical performance improvements that don't affect privacy
Privacy-friendly analytics options
Industry research on privacy vs. performance practices

Documentation of trade-offs for each approach

But YOU must decide where to draw the privacy/performance line.

Case Study 3: The Disappearing Instruction

Incident Summary

System: Claude Code Context: Multi-session development project Failure Type: Instruction

persistence failure

Timeline

Session 1:
User: "For this project, always use ES6 arrow functions, not function keyword"
ATl: "Understood. I'll use arrow functions consistently."

Session 2 (Next Day):

8719



User: "Add a new API endpoint"

ATl: [Generates code with function keyword]

function handleRequest (req, res) { ... }

User notices, corrects Al. Work continues.

Session 3 (Week Later):

User: "Add authentication middleware"

AI: [Generates code with function keyword AGAIN]

Root Cause

Instructions only persist within a single session context. New sessions start "fresh" without project-

specific conventions.

How Tractatus Would Have Prevented It

Instruction Persistence:

Session 1:

InstructionPersistenceClassifier.classify ({

text: "Always use ES6 arrow functions, not function keyword",
source: "user"

})

Result: {

quadrant: "OPERATIONAL",
persistence: "MEDIUM",

temporal scope: "PROJECT",
verification required: "REQUIRED",

explicitness: 0.85

// Stored persistently in .claude/instruction-history.json

9719



Session 2 (Loads instruction history):

// AI starts session

ContextLoader.loadInstructions ()

Active instructions:
[1] Use ES6 arrow functions (OPERATIONAL, MEDIUM persistence)

[2] MongoDB on port 27017 (SYSTEM, HIGH persistence)

[3]

// AI generates code

const handleRequest = (req, res) => { ... } // v Correct
CrossReferenceValidator:

// If AI tried to use function keyword

{
status: '"WARNING',

reason: 'Code style conflicts with project convention',
instruction: 'Always use ES6 arrow functions',
suggestion: 'Convert to arrow function',

auto fix available: true

Case Study 4: The Runaway Refactor

Incident Summary

System: LLM code assistant Context: "Improve code quality" request Failure Type: Scope creep

without verification

Timeline

User: "Refactor the authentication module to be cleaner"

AI: [Proceeds to refactor authentication, database, API routes, error handling,

10719



Result:

47 files modified

Multiple breaking changes

Hours of debugging

User only wanted auth module touched

Root Cause

» No verification of scope

» No metacognitive check: "Is this what was requested?"
» No complexity monitoring

» No confirmation before widespread changes

How Tractatus Would Have Prevented It

MetacognitiveVerifier (Before Refactor):

11719



action: "Refactor authentication module",
scope_ analysis: {
requested: ["auth module"],
proposed: ["auth", "database", "API routes", "error handling", "logging"],

scope creep detected: true

by

verification: {
alignment: 0.45, // LOW - doing much more than requested
coherence: 0.75, // OK - changes make sense
completeness: 0.80, // OK - thorough
safety: 0.30, // LOW - wide-ranging changes risky
alternatives: 0.40 // LOW - didn't consider limited scope

s

overall confidence: 0.48, // REQUIRE REVIEW

decision: 'REQUIRE REVIEW',

recommendation:

Proposed refactoring exceeds requested scope significantly.

Requested: Authentication module

Proposed: 47 files across 5 system areas

Recommend:

1. Start with ONLY authentication module

2. Document other improvements for separate approval

3. Implement changes incrementally with testing

Proceed with full refactor? (yes/no)

ContextPressureMonitor:

12719



task complexity alert: true,
reason: 'Refactoring 47 files simultaneously',
recommendation: 'Break into smaller tasks',

suggested approach: [

'Phase 1: Auth module only (verify)',
'Phase 2: Database layer (verify)',
'Phase 3: API routes (verify)',
'Phase 4: Error handling (verify)'

Case Study 5: The Silent Degradation

Incident Summary

System: Claude Code Context: 6-hour coding session Failure Type: Undetected quality

degradation

Timeline

Hours 0-2: Excellent code quality, comprehensive tests, good documentation Hours 2-4: Code
quality declining, fewer tests, less documentation Hours 4-6: Multiple bugs, incomplete features,

forgot requirements

Metrics
Time Token Usage Error Rate Test Coverage
0-2h 40,000 (20%) 0.5% 95%
2-4h 120,000 (60%) 3.2% 75%
4-6h 180,000 (90%) 12.1% 45%

13719



How Tractatus Would Have Prevented It
ContextPressureMonitor (Continuous):

Hour 2 (40% tokens):

[Pressure: ELEVATED - 35%]

Recommendations:

v INCREAS E_VERI FICATION
- More careful code review

- Slower, more deliberate changes

Hour 4 (60% tokens):

[Pressure: HIGH - 58%]

Recommendations:

I\ SUGGEST CONTEXT REFRESH
- Consider creating session handoff
- Error rate increasing (3.2%)

- Test coverage declining

Action: Recommend session break
Hour 5.5 (90% tokens):

[Pressure: DANGEROUS - 87%]

Recommendations:
ﬂ IMMEDIATE HALT

- Error rate critical (12.1%)
- Context severely degraded

- Test coverage dropped to 45%

Action: MANDATORY session handoff, do not proceed

Automated Response:

14719



£ CRITICAL SESSION PRESSURE DETECTED

Session quality has degraded significantly:
- Token usage: 90% (180k/200k)
- Error frequency: 12.1% (up from 0.5%)

- Test coverage: 45% (down from 95%)
Creating session handoff document...
[Session handoff created: .claude/sessions/handoff-2025-10-07-critical.md]

Please start a fresh session using the handoff document.

Continuing in this degraded state risks introducing critical bugs.

Common Failure Patterns

Pattern 1: Instruction Forgetting
Symptoms:

» Al contradicts earlier instructions
» Conventions inconsistently applied

o Parameters change between sessions
Tractatus Prevention:

¢ InstructionPersistenceClassifier stores instructions
« CrossReferenceValidator enforces them

o Persistent instruction database across sessions

Pattern 2: Values Creep
Symptoms:

« Al makes ethical/values decisions

» Privacy/security trade-offs without approval

15719



» Changes affecting user agency
Tractatus Prevention:

« BoundaryEnforcer detects values decisions
» Blocks automation of irreducible human choices

» Provides options but requires human decision

Pattern 3: Context Degradation
Symptoms:

o Error rate increases over time
« Quality decreases in long sessions

» Forgotten requirements
Tractatus Prevention:

» ContextPressureMonitor tracks degradation
» Multi-factor pressure analysis

« Automatic session handoff recommendations

Pattern 4: Unchecked Reasoning
Symptoms:

« Plausible but incorrect solutions
o Missed edge cases

» Overly complex approaches
Tractatus Prevention:

» MetacognitiveVerifier checks reasoning
» Alignment/coherence/completeness/safety/alternatives scoring

» Confidence thresholds block low-quality actions

16/19



Lessons Learned

1. Persistence Matters

Instructions given once should persist across:

» Sessions (unless explicitly temporary)
» Context refreshes

» Model updates

Tractatus Solution: Instruction history database

2. Validation Before Execution

Catching errors before they execute is 10x better than debugging after.

Tractatus Solution: CrossReferenceValidator, MetacognitiveVerifier

3. Some Decisions Can't Be Automated

Values, ethics, user agency - these require human judgment.

Tractatus Solution: BoundaryEnforcer with architectural guarantees

4. Quality Degrades Predictably

Context pressure, token usage, error rates - these predict quality loss.

Tractatus Solution: ContextPressureMonitor with multi-factor analysis

5. Architecture > Training

You can't train an Al to "be careful" - you need structural guarantees.

Tractatus Solution: All five services working together

17719



Impact Assessment

Without Tractatus

o 27027 Incident: 2+ hours debugging, deployment blocked
» Privacy Creep: Potential GDPR violation, user trust damage
- Disappearing Instructions: Constant corrections, frustration
» Runaway Refactor: Days of debugging, system instability

» Silent Degradation: Bugs in production, technical debt

Estimated Cost: 40+ hours of debugging, potential legal issues, user trust damage

With Tractatus

All incidents prevented before execution:

Automated validation catches errors

Human judgment reserved for appropriate domains

Quality maintained through pressure monitoring

Instructions persist across sessions

Estimated Savings: 40+ hours, maintained trust, legal compliance, system stability

Next Steps

Implementation Guide - Add Tractatus to your project

Interactive Demo - Experience the 27027 incident firsthand

Framework Documentation - Complete technical documentation

GitHub Repository - Source code and examples

Related: Browse more topics in Framework Documentation

18719


https://github.com/AgenticGovernance/tractatus-framework

© 2025 Tractatus Al Safety Framework

This document is part of the Tractatus Agentic Governance System

https://agenticgovernance.digital

19719



