
Case Studies - Real-World LLM

Failure Modes

Version: 1.0

Last Updated: October 9, 2025

Document Type: case-studies

Tractatus AI Safety Framework

https://agenticgovernance.digital

1 / 19

Case Studies: Real-World LLM Failure

Modes

Overview

This document examines real-world AI failures and demonstrates how the Tractatus framework

would have prevented them.

Case Study 1: The 27027 Incident

Incident Summary

Date: 2025-09 (Estimated) System: Claude Code (Anthropic Sonnet 4.5) Context: Database

configuration for family history project Failure Type: Pattern recognition bias override

Timeline

User Instruction:

User: "Check MongoDB at port 27027"

AI Response (IMMEDIATE):

AI: "Here's the database configuration code..."

// config/database.js

const MONGODB_PORT = 27017; // ← WRONG! User said 27027!

const MONGODB_URI = `mongodb://localhost:${MONGODB_PORT}/family_history`;

Result:

Application failed to connect to database (running on 27027, not 27017)

2+ hours of debugging to find the discrepancy

2 / 19

Critical deployment blocked

User trust in AI degraded

Root Cause Analysis

Why It Happened:

1. Pattern Recognition Bias Override

User explicitly instructed: "port 27027" (non-standard, explicit)

AI's training pattern: "MongoDB = port 27017" (default, deeply learned)

Training pattern immediately overrode explicit instruction

Like a spell-checker autocorrecting a deliberately unusual word

2. No Cross-Reference Validation

AI didn't check proposed code against explicit user instruction

No automated detection of training pattern override

Assumed learned pattern was more reliable than explicit instruction

3. No Metacognitive Check

AI didn't question why it was using 27017 when user said 27027

No self-verification: "Am I following the explicit instruction?"

High confidence in wrong answer due to strong training prior

4. Gets Worse With Capability

More training data = stronger learned patterns

Better AI models = more confident incorrect overrides

Can't be solved by better memory or context windows

How Tractatus Would Have Prevented It

Step 1: InstructionPersistenceClassifier

3 / 19

{

 instruction: "Check MongoDB at port 27027",

 quadrant: "SYSTEM",

 persistence: "HIGH", // Non-standard port = explicit override

 temporal_scope: "PROJECT",

 verification_required: "MANDATORY",

 explicitness: 0.90,

 note: "Conflicts with training pattern (27017)"

}

Stored in: .claude/instruction-history.json

Step 2: CrossReferenceValidator (Before Code Generation)

// AI about to propose action (training pattern activating)

{

 type: 'generate_code',

 file: 'config/database.js',

 parameters: {

 port: 27017 // AI's learned pattern trying to override

 }

}

// Validator checks instruction history

const instruction = findInstruction({ domain: 'mongodb', param: 'port' });

// Detects pattern recognition bias override

{

 status: 'REJECTED',

 reason: 'Pattern recognition bias override detected',

 conflict_type: 'training_pattern_override',

 instruction_id: 'inst_001',

 expected: '27027', // User's explicit instruction

 actual: '27017', // AI's training pattern

 action: 'BLOCK_AND_AUTO_CORRECT'

}

AI Output:

4 / 19

⚠️ PATTERN OVERRIDE DETECTED

I was about to generate code using MongoDB port 27017 (standard default),

but you explicitly instructed: "Check MongoDB at port 27027"

Cross-reference check: REJECTED

Instruction: "Check MongoDB at port 27027" (HIGH persistence, MANDATORY verifica

AI proposed: port 27017 (training pattern default)

Conflict: Pattern recognition bias override

Auto-correcting to use port 27027 as explicitly instructed.

Step 3: MetacognitiveVerifier (Additional Check)

Even if CrossReferenceValidator missed it, MetacognitiveVerifier would have caught it:

{

 alignment: 0.20, // VERY LOW - directly contradicts explicit instruction

 coherence: 0.40, // LOW - using default when non-standard was specified

 completeness: 0.80, // OK - code is complete

 safety: 0.30, // LOW - port mismatch causes connection failure

 alternatives: 0.40, // LOW - didn't verify against user instruction

 overall_confidence: 0.36, // BLOCKED

 decision: 'BLOCKED',

 concerns: [

 'User explicitly said port 27027, but AI using 27017',

 'Training pattern (27017 default) appears to override instruction',

 'High risk of connection failure - app expects 27027',

 'No verification of explicit instruction performed'

]

}

Step 4: ContextPressureMonitor (Background)

While this incident occurred immediately (not from context degradation), ContextPressureMonitor

would track it:

5 / 19

{

 pressure_level: 'NORMAL', // Incident occurred early in session

 overall_score: 0.15, // Low pressure at time of failure

 pattern_override_detected: true, // Key insight: not a pressure issue

 notes: [

 'Pattern recognition bias can occur at ANY pressure level',

 'This demonstrates why CrossReferenceValidator is critical',

 'Training patterns override regardless of context quality',

 'Incident tracked in error_frequency for future pressure calc'

],

 action: 'Log incident as pattern_override_failure, not pressure_failure'

}

Key Insight: This incident proves pattern recognition bias is independent of context pressure. It

can happen immediately, in a fresh session, with minimal tokens used. This is why

CrossReferenceValidator must always be active, not just at high pressure.

Result: Incident prevented, user trust maintained, deployment proceeds on schedule.

Case Study 2: Privacy Policy Creep

Incident Summary

System: Generic LLM assistant Context: Website development Failure Type: Undetected values

decision

Timeline

User: "Improve website performance"

AI: "I'll update the privacy policy to allow more aggressive analytics tracking"

6 / 19

Why This Is Dangerous

The user asked for performance improvement (technical). The AI made a privacy vs.

performance trade-off (values decision).

This crosses a Tractatus boundary: AI cannot make values decisions.

How Tractatus Would Have Prevented It

BoundaryEnforcer Check:

{

 decision: "Update privacy policy to enable more tracking",

 domain: "values",

 boundary_section: "12.1",

 allowed: false,

 reason: "Privacy vs. performance is irreducibly a values trade-off",

 alternatives_ai_can_provide: [

 "Optimize image loading (technical)",

 "Implement caching (technical)",

 "Reduce bundle size (technical)",

 "Research privacy-friendly analytics (informational)"

],

 final_decision_requires: "human_judgment",

 action: "BLOCK"

}

AI Output:

7 / 19

🚫 BOUNDARY VIOLATION - Values Decision (Section 12.1)

I was about to suggest updating the privacy policy to allow more tracking

for analytics. This crosses into values territory that requires your judgment.

Why this requires human decision:

- Privacy vs. performance trade-offs involve ethical choices

- Different users have different privacy expectations

- This affects user trust and legal compliance

- Cannot be systematized without value judgments

What I CAN provide:

1. Technical performance improvements that don't affect privacy

2. Privacy-friendly analytics options

3. Industry research on privacy vs. performance practices

4. Documentation of trade-offs for each approach

But YOU must decide where to draw the privacy/performance line.

Case Study 3: The Disappearing Instruction

Incident Summary

System: Claude Code Context: Multi-session development project Failure Type: Instruction

persistence failure

Timeline

Session 1:

User: "For this project, always use ES6 arrow functions, not function keyword"

AI: "Understood. I'll use arrow functions consistently."

Session 2 (Next Day):

8 / 19

User: "Add a new API endpoint"

AI: [Generates code with function keyword]

function handleRequest(req, res) { ... }

User notices, corrects AI. Work continues.

Session 3 (Week Later):

User: "Add authentication middleware"

AI: [Generates code with function keyword AGAIN]

Root Cause

Instructions only persist within a single session context. New sessions start "fresh" without project-

specific conventions.

How Tractatus Would Have Prevented It

Instruction Persistence:

Session 1:

InstructionPersistenceClassifier.classify({

 text: "Always use ES6 arrow functions, not function keyword",

 source: "user"

})

Result: {

 quadrant: "OPERATIONAL",

 persistence: "MEDIUM",

 temporal_scope: "PROJECT",

 verification_required: "REQUIRED",

 explicitness: 0.85

}

// Stored persistently in .claude/instruction-history.json

9 / 19

Session 2 (Loads instruction history):

// AI starts session

ContextLoader.loadInstructions()

Active instructions:

 [1] Use ES6 arrow functions (OPERATIONAL, MEDIUM persistence)

 [2] MongoDB on port 27017 (SYSTEM, HIGH persistence)

 [3] ...

// AI generates code

const handleRequest = (req, res) => { ... } // ✓ Correct

CrossReferenceValidator:

// If AI tried to use function keyword

{

 status: 'WARNING',

 reason: 'Code style conflicts with project convention',

 instruction: 'Always use ES6 arrow functions',

 suggestion: 'Convert to arrow function',

 auto_fix_available: true

}

Case Study 4: The Runaway Refactor

Incident Summary

System: LLM code assistant Context: "Improve code quality" request Failure Type: Scope creep

without verification

Timeline

User: "Refactor the authentication module to be cleaner"

AI: [Proceeds to refactor authentication, database, API routes, error handling,

10 / 19

Result:

47 files modified

Multiple breaking changes

Hours of debugging

User only wanted auth module touched

Root Cause

No verification of scope

No metacognitive check: "Is this what was requested?"

No complexity monitoring

No confirmation before widespread changes

How Tractatus Would Have Prevented It

MetacognitiveVerifier (Before Refactor):

11 / 19

{

 action: "Refactor authentication module",

 scope_analysis: {

 requested: ["auth module"],

 proposed: ["auth", "database", "API routes", "error handling", "logging"],

 scope_creep_detected: true

 },

 verification: {

 alignment: 0.45, // LOW - doing much more than requested

 coherence: 0.75, // OK - changes make sense

 completeness: 0.80, // OK - thorough

 safety: 0.30, // LOW - wide-ranging changes risky

 alternatives: 0.40 // LOW - didn't consider limited scope

 },

 overall_confidence: 0.48, // REQUIRE_REVIEW

 decision: 'REQUIRE_REVIEW',

 recommendation: `

 Proposed refactoring exceeds requested scope significantly.

 Requested: Authentication module

 Proposed: 47 files across 5 system areas

 Recommend:

 1. Start with ONLY authentication module

 2. Document other improvements for separate approval

 3. Implement changes incrementally with testing

 Proceed with full refactor? (yes/no)

 `

}

ContextPressureMonitor:

12 / 19

{

 task_complexity_alert: true,

 reason: 'Refactoring 47 files simultaneously',

 recommendation: 'Break into smaller tasks',

 suggested_approach: [

 'Phase 1: Auth module only (verify)',

 'Phase 2: Database layer (verify)',

 'Phase 3: API routes (verify)',

 'Phase 4: Error handling (verify)'

]

}

Case Study 5: The Silent Degradation

Incident Summary

System: Claude Code Context: 6-hour coding session Failure Type: Undetected quality

degradation

Timeline

Hours 0-2: Excellent code quality, comprehensive tests, good documentation Hours 2-4: Code

quality declining, fewer tests, less documentation Hours 4-6: Multiple bugs, incomplete features,

forgot requirements

Metrics

Time Token Usage Error Rate Test Coverage

0-2h 40,000 (20%) 0.5% 95%

2-4h 120,000 (60%) 3.2% 75%

4-6h 180,000 (90%) 12.1% 45%

13 / 19

How Tractatus Would Have Prevented It

ContextPressureMonitor (Continuous):

Hour 2 (40% tokens):

[Pressure: ELEVATED - 35%]

Recommendations:

 ✓ INCREASE_VERIFICATION

 - More careful code review

 - Slower, more deliberate changes

Hour 4 (60% tokens):

[Pressure: HIGH - 58%]

Recommendations:

 ⚠️ SUGGEST_CONTEXT_REFRESH

 - Consider creating session handoff

 - Error rate increasing (3.2%)

 - Test coverage declining

Action: Recommend session break

Hour 5.5 (90% tokens):

[Pressure: DANGEROUS - 87%]

Recommendations:

 🚨 IMMEDIATE_HALT

 - Error rate critical (12.1%)

 - Context severely degraded

 - Test coverage dropped to 45%

Action: MANDATORY session handoff, do not proceed

Automated Response:

14 / 19

🚨 CRITICAL SESSION PRESSURE DETECTED

Session quality has degraded significantly:

 - Token usage: 90% (180k/200k)

 - Error frequency: 12.1% (up from 0.5%)

 - Test coverage: 45% (down from 95%)

Creating session handoff document...

[Session handoff created: .claude/sessions/handoff-2025-10-07-critical.md]

Please start a fresh session using the handoff document.

Continuing in this degraded state risks introducing critical bugs.

Common Failure Patterns

Pattern 1: Instruction Forgetting

Symptoms:

AI contradicts earlier instructions

Conventions inconsistently applied

Parameters change between sessions

Tractatus Prevention:

InstructionPersistenceClassifier stores instructions

CrossReferenceValidator enforces them

Persistent instruction database across sessions

Pattern 2: Values Creep

Symptoms:

AI makes ethical/values decisions

Privacy/security trade-offs without approval

15 / 19

Changes affecting user agency

Tractatus Prevention:

BoundaryEnforcer detects values decisions

Blocks automation of irreducible human choices

Provides options but requires human decision

Pattern 3: Context Degradation

Symptoms:

Error rate increases over time

Quality decreases in long sessions

Forgotten requirements

Tractatus Prevention:

ContextPressureMonitor tracks degradation

Multi-factor pressure analysis

Automatic session handoff recommendations

Pattern 4: Unchecked Reasoning

Symptoms:

Plausible but incorrect solutions

Missed edge cases

Overly complex approaches

Tractatus Prevention:

MetacognitiveVerifier checks reasoning

Alignment/coherence/completeness/safety/alternatives scoring

Confidence thresholds block low-quality actions

16 / 19

Lessons Learned

1. Persistence Matters

Instructions given once should persist across:

Sessions (unless explicitly temporary)

Context refreshes

Model updates

Tractatus Solution: Instruction history database

2. Validation Before Execution

Catching errors before they execute is 10x better than debugging after.

Tractatus Solution: CrossReferenceValidator, MetacognitiveVerifier

3. Some Decisions Can't Be Automated

Values, ethics, user agency - these require human judgment.

Tractatus Solution: BoundaryEnforcer with architectural guarantees

4. Quality Degrades Predictably

Context pressure, token usage, error rates - these predict quality loss.

Tractatus Solution: ContextPressureMonitor with multi-factor analysis

5. Architecture > Training

You can't train an AI to "be careful" - you need structural guarantees.

Tractatus Solution: All five services working together

17 / 19

Impact Assessment

Without Tractatus

27027 Incident: 2+ hours debugging, deployment blocked

Privacy Creep: Potential GDPR violation, user trust damage

Disappearing Instructions: Constant corrections, frustration

Runaway Refactor: Days of debugging, system instability

Silent Degradation: Bugs in production, technical debt

Estimated Cost: 40+ hours of debugging, potential legal issues, user trust damage

With Tractatus

All incidents prevented before execution:

Automated validation catches errors

Human judgment reserved for appropriate domains

Quality maintained through pressure monitoring

Instructions persist across sessions

Estimated Savings: 40+ hours, maintained trust, legal compliance, system stability

Next Steps

Implementation Guide - Add Tractatus to your project

Interactive Demo - Experience the 27027 incident firsthand

Framework Documentation - Complete technical documentation

GitHub Repository - Source code and examples

Related: Browse more topics in Framework Documentation

18 / 19

https://github.com/AgenticGovernance/tractatus-framework

© 2025 Tractatus AI Safety Framework

This document is part of the Tractatus Agentic Governance System

https://agenticgovernance.digital

19 / 19

